
Complementary vertices and
adjacency testing in polytopes

Benjamin Burton

Computational Geometry & Topology Group
The University of Queensland, Australia

COCOON 2012

1 / 22



Overview

A theorem:

For a simple polytope of dimension > 1,
some pair of complementary vertices
=⇒ at least two pairs of complementary vertices

An algorithm:

All-pairs adjacency testing for vertices of a polytope in Rn

Motivations:
Computational geometry (vertex enumeration)
Computational topology (unknot recognition).

2 / 22



Definitions

Polytopes are always bounded.

The facets of a d-dimensional polytope are its
(d − 1)-dimensional faces.

In a simple polytope of dimension d ,
every vertex belongs to precisely d facets.

In a simplicial polytope, every facet is a simplex
(and so contains precisely d vertices).

3 / 22



A theorem

Complementary vertices do not lie on a common facet.

Theorem
In a simple polytope of dimension > 1,
if there is a pair of complementary vertices
=⇒ there are at least two such pairs.

Disjoint facets do not contain any common vertices.

Corollary (Dual statement)
In a simplicial polytope of dimension > 1,
if there is a pair of disjoint facets
=⇒ there are at least two such pairs.

4 / 22



A theorem

Complementary vertices do not lie on a common facet.

Theorem
In a simple polytope of dimension > 1,
if there is a pair of complementary vertices
=⇒ there are at least two such pairs.

Disjoint facets do not contain any common vertices.

Corollary (Dual statement)
In a simplicial polytope of dimension > 1,
if there is a pair of disjoint facets
=⇒ there are at least two such pairs.

5 / 22



A theorem

Complementary vertices do not lie on a common facet.

Theorem
In a simple polytope of dimension > 1,
if there is a pair of complementary vertices
=⇒ there are at least two such pairs.

Disjoint facets do not contain any common vertices.

Corollary (Dual statement)
In a simplicial polytope of dimension > 1,
if there is a pair of disjoint facets
=⇒ there are at least two such pairs.

6 / 22



The proof

7 / 22



The proof

8 / 22



The proof

9 / 22



The proof

10 / 22



The proof

11 / 22



The proof

12 / 22



The details

Build an auxiliary graph:
Type A nodes are pairs of complementary vertices;
Type B nodes are pairs of vertices on exactly one common facet;
Arcs join {u, x} ↔ {u, y}, where x , y are adjacent vertices,
and no facet contains all of u, x , y .

13 / 22



The details

Observations:
Each type A node has 2d outgoing arcs;
Each type B node has two outgoing arcs;
There are no loops or multiple edges.

Our strategy is to follow a path from a type A vertex,
and hope to arrive at a different type A vertex.

14 / 22



The details

More observations:
On any path passing through only type B nodes,
every vertex pair {x , y} meets the same 2d − 1 facets.
All 2d outgoing arcs from any type A node lead to
vertex pairs {x , y} that meet different sets of facets.

=⇒ A path from a type A vertex cannot return to the same vertex.

15 / 22



Observations

The “simple” condition is necessary.

The proof is reminiscent of the Lemke-Howson algorithm for
constructing Nash equilibria in game theory.

I Lemke-Howson operates on a tightly-structured pair of
“best response polytopes”, and also yields a parity theorem
(the number of Nash equilibria is odd).

I Our setting is much less controlled, and simple examples
show that such a parity result is not possible.

16 / 22



An algorithm
We work with a polytope P = {x ∈ Rn |Ax = b and x ≥ 0}.

This is a standard presentation in mathematical programming.
Caveat: The matrix A does not immediately tell us
the dimension, or the facets, or whether P is simple.

All-pairs adjacency testing
Input: A polytope P described by n, A and b as above,
plus the list of all vertices of P.

Output: The set of all adjacent pairs of vertices of P.

Applications and motivations:
Studying the graph of a polytope
The double description method for vertex enumeration
(used in multiobjective optimisation and computational topology)

17 / 22



The setting

For vertices x , y of P, the join x ∨ y is the smallest face
containing both x and y .

Observation: x and y are adjacent if and only if x ∨ y is an edge.

Well-known tests for whether vertices x , y are adjacent:
a O(nV ) combinatorial test (search for a third vertex on x ∨ y );
a O(n3) algebraic test (compute the dimension of x ∨ y ).

18 / 22



Our results

An O(n) test for simple polytopes:
Requires O(n2V + nV 2) precomputation;
Also identifies whether P is simple.

For all-pairs adjacency testing, this outperforms the
O(nV 3) and O(n3V 2) combinatorial and algebraic methods.

For non-simple polytopes, we still obtain a fast filter for
eliminating non-adjacent pairs.

19 / 22



How it works

If x and y are non-adjacent and P is simple, then by our theorem
there is some other pair of vertices x ′, y ′ with x ∨ y = x ′ ∨ y ′.

Precomputation:
Compute x ∨ y for all vertex pairs {x , y}.
Fast adjacency test:
Given vertices x , y , look up whether x ∨ y was computed
more than once.

20 / 22



Implementation details

Store vertices and faces using zero sets:
bitmasks of length n indicating which coordinates are set to zero.

Store joins x ∨ y using a trie for O(n) insertion and lookup.

Precomputation takes O(n2V + nV 2) time.
The O(n2V ) term comes from testing whether P is simple.

Questions?

21 / 22



Implementation details

Store vertices and faces using zero sets:
bitmasks of length n indicating which coordinates are set to zero.

Store joins x ∨ y using a trie for O(n) insertion and lookup.

Precomputation takes O(n2V + nV 2) time.
The O(n2V ) term comes from testing whether P is simple.

Questions?

22 / 22


